A Comparison of Different Regression Algorithms for Downscaling Monthly Satellite-Based Precipitation over North China

نویسندگان

  • Wenlong Jing
  • Yaping Yang
  • Xiafang Yue
  • Xiaodan Zhao
چکیده

Environmental monitoring of Earth from space has provided invaluable information for understanding land–atmosphere water and energy exchanges. However, the use of satellite-based precipitation observations in hydrologic and environmental applications is often limited by their coarse spatial resolutions. In this study, we propose a downscaling approach based on precipitation–land surface characteristics. Daytime land surface temperature, nighttime land surface temperature, and day–night land surface temperature differences were introduced as variables in addition to the Normalized Difference Vegetation Index (NDVI), the Digital Elevation Model (DEM), and geolocation (longitude, latitude). Four machine learning regression algorithms, the classification and regression tree (CART), the k-nearest neighbors (k-NN), the support vector machine (SVM), and random forests (RF), were implemented to downscale monthly TRMM 3B43 V7 precipitation data from 25 km to 1 km over North China for the purpose of comparison of algorithm performance. The downscaled results were validated based on observations from meteorological stations and were also compared to a previous downscaling algorithm. According to the validation results, the RF-based model produced the results with the highest accuracy. It was followed by SVM, CART, and k-NN, but the accuracy of the downscaled results using SVM relied greatly on residual correction. The downscaled results were well correlated with the observations during the year, but the accuracies were relatively lower in July to September. Downscaling errors increase as monthly total precipitation increases, but the RF model was less affected by this proportional effect between errors and observation compared with the other algorithms. The variable importances of the land surface temperature (LST) feature variables were higher than those of NDVI, which indicates the significance of considering the precipitation–land surface temperature relationship when downscaling TRMM 3B43 V7 precipitation data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mapping Fine Spatial Resolution Precipitation from TRMM Precipitation Datasets Using an Ensemble Learning Method and MODIS Optical Products in China

Precipitation data are important for the fields of hydrology and meteorology, and are fundamental for ecosystem monitoring and climate change research. Satellite-based precipitation products are already able to provide high temporal resolution precipitation information at a global level. However, the coarse spatial resolution has restricted their use in regional level studies. In this study, mo...

متن کامل

Comparison of Different Machine Learning Approaches for Monthly Satellite-Based Soil Moisture Downscaling over Northeast China

Although numerous satellite-based soil moisture (SM) products can provide spatiotemporally continuous worldwide datasets, they can hardly be employed in characterizing fine-grained regional land surface processes, owing to their coarse spatial resolution. In this study, we proposed a machine-learning-based method to enhance SM spatial accuracy and improve the availability of SM data. Four machi...

متن کامل

Mapping Annual Precipitation across Mainland China in the Period 2001-2010 from TRMM3B43 Product Using Spatial Downscaling Approach

Spatially explicit precipitation data is often responsible for the prediction accuracy of hydrological and ecological models. Several statistical downscaling approaches have been developed to map precipitation at a high spatial resolution, which are mainly based on the valid conjugations between satellite-driven precipitation data and geospatial predictors. Performance of the existing approache...

متن کامل

Fine-Resolution Precipitation Mapping in a Mountainous Watershed: Geostatistical Downscaling of TRMM Products Based on Environmental Variables

Accurate precipitation data at a high spatial resolution are essential for hydrological, meteorological, and ecological research at regional scales. This study presented a geostatistical downscaling-calibration procedure to derive the high spatial resolution maps of precipitation over a mountainous watershed affected by a monsoon climate. Based on the relationships between precipitation and oth...

متن کامل

Geostatistical Integration of Coarse Resolution Satellite Precipitation Products and Rain Gauge Data to Map Precipitation at Fine Spatial Resolutions

This paper investigates the benefits of integrating coarse resolution satellite-derived precipitation estimates with quasi-point rain gauge data for generating a fine spatial resolution precipitation map product. To integrate the two precipitation data sources, a geostatistical downscaling and integration approach is presented that can account for the differences in spatial resolution between d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Remote Sensing

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2016